首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   14篇
地质学   26篇
海洋学   10篇
天文学   15篇
综合类   1篇
自然地理   5篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2011年   8篇
  2010年   5篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1998年   3篇
  1997年   1篇
  1991年   2篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   5篇
  1971年   1篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
51.
52.
We conducted hydrographic observations in 2002 to investigate the anticyclonic eddy that emerges every summer in Funka Bay, Hokkaido, Japan, and elucidate dynamical structure and wind-driven upwelling within the eddy. The anticyclonic eddy has a vertical scale of 32 m and is characterized by a strong baroclinic flow and a sharp pycnocline with a concave isopycnal structure. The sharp pycnocline occurs below a warm and relatively low-salinity water termed summer Funka Bay water (FS), which is formed by heating from solar radiation and dilution from river discharge in summertime Funka Bay. Flow of the anticyclonic eddy rotates as a rigid body at each layer, and the horizontal scale and rotation period of the eddy in the surface layer are about 15 km and 2.2 days, respectively. The dynamical balance of the anticyclonic eddy is well explained by the gradient flow balance. The contribution of centrifugal force to the gradient flow balance is about 27%. Therefore, the effect of the nonlinear term associated with centrifugal force cannot be neglected in considering the dynamics of the anticyclonic eddy in summertime Funka Bay. In addition, upwelling of subsurface water was observed in the surface layer of the central part of the eddy. The formation mechanism of this upwelling is consistent with interaction between horizontal uniform wind and the eddy. This upwelling is driven by upward Ekman pumping velocity related to the horizontal divergence of Ekman transport. In summertime Funka Bay, there are two wind effects that affect the anticyclonic eddy: a decay effect of the upwelling of subsurface water resulting from horizontal uniform wind (mainly northwesterly wind), and a maintenance or spin-up effect of horizontal non-uniform wind (mainly southerly–southeasterly seasonal wind) with negative wind stress curl.  相似文献   
53.
In situ X-ray diffraction measurements of Fe- and Al-bearing MgSiO3-rich perovskite (FeAl-Pv), which was synthesized from a natural orthopyroxene, were performed at pressures of 19–32 GPa and temperatures of 300–1,500 K using a combination of a Kawai-type apparatus with eight sintered-diamond anvils and synchrotron radiation. Two runs were performed using a high-pressure cell with two sample chambers, and both MgSiO3 perovskite (Mg-Pv) and FeAl-Pv were synthesized simultaneously in the same cell. Thus we were able to measure specific volumes (V/V 0) of Mg-Pv and FeAl-Pv at the same P−T conditions. At all the measurement conditions, values of the specific volume of FeAl-Pv are consistent with those of Mg-Pv within 2 Standard Deviation, strongly suggesting that effect of incorporation of iron and aluminum on the thermoelastic properties of magnesium silicate perovskite is undetectable in this composition, pressure, and temperature range. Two additional runs were performed using a high-pressure cell that has one sample chamber and unit-cell volumes of FeAl-Pv were measured at pressures and temperatures up to 32 GPa and 1,500 K, respectively. All the unit-cell volume data of FeAl-Pv perovskite were fitted to the high temperature Birch–Murnaghan equation of state and a complete set of thermoelastic parameters of this perovskite was determined with an assumption of K′ 300,0 = 4. The determined parameters are K 300,0 = 243(3) GPa, (∂K T,0/∂T) P = −0.030(8) GPa/K, a 0 = 2.78(18) × 10−5 K−1, and b 0 = 0.88(28) × 10−8 K−2, where a 0 and b 0 are the coefficients of the following expression describing the zero-pressure thermal expansion: α T,0 = a 0 + b 0 T. The equation-of-state parameters of FeAl-Pv are in good agreement with those of MgSiO3 perovskite at the conditions corresponding to the uppermost part of the lower mantle.  相似文献   
54.
This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of 7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9–6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent characteristics of collisional tectonics resulting from the two collisional events since the Early Tertiary.  相似文献   
55.
56.
Energy and thermal transfers in active volcanoes can play an important role incontrolling their dynamics depending on the hydrothermal state. Much geothermalenergy is released through the groundwater circulation, hot gas emission and thermalconduction. Therefore, it is very important to know the hydrological and thermalenvironments associated with volcanoes from the volcano-energetic point of view.However, it is difficult to evaluate these because of the availability of only a fewborehole data on the summit of volcanoes. Recent studies reveal that self-potential(SP) anomalies (up to some hundreds of mV) are observed on volcanoes, activefissure zones and/or fumarolic areas, suggesting that the SP anomalies are closelyrelated to heat-triggered phenomena such as thermoelectric and electrokinetic effectsdue to hydrothermal circulations. Therefore, SP studies can be appropriate for sensingthe thermal and hydrothermal states of volcanoes. In addition, monitoring SP anomaliescan be an efficient method for describing the change of thermal state and the evolutionof the hydrothermal (and volcanic) activities.In this paper, we have reviewed the origin of the SP anomalies associated withvolcanic phenomena theoretically as well as experimentally. Subsequently, wehave presented the results of many case studies and have classified the types ofanomalies in accordance with possible mechanisms. We have also described theresults of time variations of SP anomalies associated with volcanic activities. Timevarying SP fields exhibit the dynamic aspects of volcanic activities correspondingto the evolution of hydrothermal activity, changes in ground water circulation andmagma displacement. These morphological insights should lead to a quantitativeinterpretation of SP anomalies in volcanic regions.  相似文献   
57.
The diet of at least 28 species of mesopelagic fish from the Pacific coast of Hokkaido was examined. The dominant family was the Gonostomatidae (42%) which was represented by five species. The most abundant species wasCyclothone atraria which together with the other species of this genus preyed predominantly on copepods. Euphausiids and copepods were dominant in the diet ofGonostoma gracile. The next most abundant family was the Myctophidae (32%) which was represented by seven species. The dominant species,Stenobrachius nannochir, preyed mainly on copepods. Copepods were also the dominant food item of the other myctophids except forLampanyctus jordani which fed mainly on euphausiids. The other important family was the Bathylagidae (21%).Leuroglossus schmidti was the dominant species and its diet was more diverse with ostracods, copepods, molluscs and larvaceans being the most important food items.Bathylagus ochotensis had a similar diet. Copepods were the most important food items for all but a few species and their occurrence in the fish stomachs was related to the known vertical distribution of both predators and prey. Ostracods and euphausiids were also important prey items, the latter especially in large fish species. Molluscs and larvaceans were restricted to the two species of the family Bathylagidae.  相似文献   
58.
59.
Using the micro-structure profiler, TurboMAP, large values for the turbulent energy dissipation rate ε were found just above the bottom of the shelf and around the thermocline near the continental shelf break in the East China Sea. The values found above the bottom are produced by the bottom stress due to tidal currents, resulting in a distinct bottom mixed layer where the vertical eddy diffusivity Kz is also large. Distinct maxima in the values of ε detected around the thermocline are located at the depth of the fine-scale shear maxima detected with the moored ADCP. The vertical profiles of ε were compared with those of the current velocity, and it was found that the maxima in ε appear to correspond to those of the shear with fine scale. The magnitude of the observed ε coincided approximately with the ε calculated from the fine-scale shear and the buoyancy frequency according to the parameterization proposed by Gregg (1989), if the large-scale mean shear caused by the Kuroshio is subtracted. However, it is not clear whether the parameterization for the internal wave fields in the open ocean is applicable to the estimation of ε in the shelf break. Whereas the most predominant value of ε was found just above the bottom and around the thermocline, the maxima of ε could be found in the internal area. They could have been caused by the propagation of the vertically high wave number internal tides along the characteristic ray.  相似文献   
60.
基于地震的全球面波层析成像技术的发展对于探测地球深部动力学状态起着至关紧要的作用。人们很自然地认为只有大地震才会产生类似探测所需要的穿入地球深部的长周期地震波。然而,由海洋和/或大气扰动随机产生的地震"哼鸣"的发现,即地球背景自由振荡,提供了一种可供选择的方法。我们在此呈现的是利用地震"哼鸣"而非天然地震进行上地幔地震层析成像的结果。在100~400s周期,Rayleigh波的相速度异常可通过下述方式测得,即对观测得到的54个遍布全球的地震台站中每两个台站间的互相关函数进行模拟,然后对这些异常进行反演,以获取上地幔三维S波速度结构。此方法为探测具有大气和/或海洋的类地行星——特别是火星的三维内部结构提供了一种新的途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号